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ABSTRACT: The ability of high-resolution mesoscale models to simulate near-surface and subsurface meteorological
processes is critical for representing land–atmosphere feedback processes. The High-Resolution Rapid Refresh (HRRR)
model is a 3-km numerical weather prediction model that has been used operationally since 2014. In this study, we evalu-
ated the HRRR over the contiguous United States from 1 January 2021 to 31 December 2021. We compared the 1-, 3-, 6-,
12-, 18-, 24-, 30-, and 48-h forecasts against observations of air and surface temperature, shortwave radiation, and soil tem-
perature and moisture from the 114 stations of the U.S. Climate Reference Network (USCRN) and evaluated the HRRR’s
performance for different geographic regions and land cover types. We found that the HRRR well simulated air and sur-
face temperatures, but underestimated soil temperatures when temperatures were subfreezing. The HRRR had the largest
overestimates in shortwave radiation under cloudy skies, and there was a positive relationship between the shortwave radi-
ation mean bias error (MBE) and air temperature MBE that was stronger in summer than winter. Additionally, the
HRRR underestimated soil moisture when the values exceeded about 0.2 m3 m23, but overestimated soil moisture when
measurements were below this value. Consequently, the HRRR exhibited a positive soil moisture MBE over the drier
areas of the western United States and a negative MBE over the eastern United States. Although caution is needed when
applying conclusions regarding HRRR’s biases to locations with subgrid-scale land cover variations, general knowledge of
HRRR’s biases will help guide improvements to land surface models used in high-resolution weather forecasting models.

SIGNIFICANCE STATEMENT: Weather forecasters rely upon output from many different models. However, the
models’ ability to represent processes happening near the land surface over short time scales is critical for producing ac-
curate weather forecasts. In this study, we evaluated the High-Resolution Rapid Refresh (HRRR) model using obser-
vations from the U.S. Climate Reference Network, which currently includes 114 reference climate observing stations in
the contiguous United States. These stations provide highly accurate measurements of air temperature, precipitation,
soil temperature, and soil moisture. Our findings helped illustrate conditions when the HRRR performs well, but also
conditions in which the HRRR can be improved, which we expect will motivate ongoing improvements to the HRRR
and other weather forecasting models.

KEYWORDS: Atmosphere-land interaction; Surface observations; Model evaluation/performance

1. Introduction

The High-Resolution Rapid Refresh (HRRR) model is a
deterministic convection allowing model with a 3-km grid
spacing over the continental United States that has been
used to support operational weather forecasting since 2014
(e.g., Benjamin et al. 2016; Dowell et al. 2022; James et al.
2022). An accurate representation of near- and subsurface

meteorological processes, in addition to feedback processes
between the land surface and overlying atmosphere, is critical
for the HRRR and its successors, e.g., the Rapid Refresh
Forecast System [RRFS, which is scheduled to replace the
HRRR in 2024 (Dowell et al. 2022)], to produce reliable
weather forecasts. Doing so requires that the model is able to
properly represent land–atmosphere feedback processes. Pre-
vious studies have reported that land cover variations affect
the surface energy balance which in turn influences the evolu-
tion of the planetary boundary layer (PBL), development of
clouds and precipitation, and surface radiative forcing (e.g.,
Oke 1987; Stull 1988; Segal and Arritt 1992; Pielke 2001; Ek
and Holtslag 2004; Leeper et al. 2009; Dirmeyer et al. 2012;
Wulfmeyer et al. 2018; Santanello et al. 2019; Min et al. 2021;
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Tian et al. 2022). The interactions among these processes are
oftentimes highly complex and nonlinear, yet the ability of a
model to properly simulate them is critical for improving
forecasts.

Only a few studies have investigated the performance of
near-surface meteorological fields within theHRRR. Lee et al.
(2019) found that version 2 of the HRRR had a positive 2-m
temperature bias of around 28C during the warm season, but
a bias less than 18C during the cool season compared to obser-
vations from micrometeorological towers installed in northern
Alabama from 2016 to 2017. Lee et al. (2019) also reported
that, despite these relatively small biases in the near-surface
meteorological fields, there were large differences between
the modeled and observed surface sensible, latent, and ground
heat fluxes. Min et al. (2021) evaluated version 3 of the HRRR
using observations from the New York State Mesonet and found
that the HRRR had a dry and warm bias during the warm sea-
son, which they defined as 1 June–31 August, and that the
HRRR had a significant positive bias in solar radiation under
overcast sky conditions. Fovell and Gallagher (2020) also evalu-
ated version 3 of the HRRR over the contiguous United States
using observations from rawinsondes and from the Automated
Surface Observing System (ASOS). Fovell and Gallagher (2020)
reported good agreement between the HRRR and observed
near-surface temperature and wind speeds at the earlier forecast
periods, but larger, positive wind speed biases in the PBL in the
24-h HRRR forecasts.

In addition to the above studies evaluating the performance
of the HRRR model itself, other studies have evaluated the
Rapid Update Cycle (RUC) land surface model (LSM), which
is the LSM used in the HRRR (e.g., Benjamin et al. 2016;
Smirnova et al. 2016), by conducting simulations using the
Weather Research and Forecasting (WRF) Model (e.g., Lee
et al. 2016; Kantha Rao and Rakesh 2019; Alexander et al.
2022). Alexander et al. (2022) used the WRF Model to evalu-
ate the performance of different LSMs and PBL parameteriza-
tion schemes over California’s Central Valley. The researchers
found a stronger sensitivity to the choice of LSM than PBL
scheme, but they found that the Pleim–Xiu LSM (Xiu and
Pleim 2001; Pleim and Xiu 2003) better simulated near-surface
turbulent fluxes and humidity. Lee et al. (2016) similarly
showed strong sensitivity to the choice of LSM and found that
the Noah LSM (Ek et al. 2003) compared better against obser-
vations than the other LSMs they evaluated (i.e., the RUC
LSM and Pleim–Xiu LSM).

Unfortunately, there are no known studies that have evaluated
how well the HRRR simulates soil moisture and temperature
variables across the contiguous United States. Soil moisture plays
a vital role in the partitioning of radiation into sensible and latent
heat, which is a critical process to represent accurately in LSMs
(e.g., Santanello et al. 2019; Min et al. 2021). Knowledge of how
well the HRRR simulates soil moisture can help to inform im-
provements to the model’s representation of exchanges of heat
and moisture between the land and atmosphere. Furthermore,
characterizing the HRRR’s performance for both below- and
above-ground meteorological variables, as well as evaluating the
HRRR’s performance over different regions of the United States
and for different land cover types, is important to guide

improvements to the HRRR, and ultimately the RRFS, as
well as to the LSMs used therein. Improvements to these
modeling systems will reduce uncertainties in short-term
weather forecasts and water supply forecasts.

2. Datasets

a. USCRN

In this study, we evaluated the HRRR from 1 January 2021
to 31 December 2021 using data from the stations comprising
the U.S. Climate Reference Network (USCRN; Diamond et al.
2013) within the contiguous United States. The USCRN was
commissioned in 2004, and installation of stations across the
contiguous United States was completed in 2008 (Bell et al.
2013). The aim of the USCRN is to provide long-term, accurate
observations of air temperature, precipitation, soil moisture and
temperature from sites undisturbed by changes in land cover
(e.g., urbanization). Since the network’s inception, data from
the USCRN have been used for drought monitoring (e.g.,
Leeper et al. 2021), as a component of a study of the Great
American eclipse in 2017 (e.g., Lee et al. 2018), the develop-
ment of heat exposure products (Rennie et al. 2021), validation
of satellite products (e.g., Otkin et al. 2005; Krishnan et al. 2015;
Gallo and Krishnan 2022), evaluations of meteorological obser-
vations from other networks (e.g., Hubbard et al. 2004; Sun et al.
2005; Leeper et al. 2015), and model verification studies (e.g.,
Leeper et al. 2017; Buban et al. 2020).

Each USCRN station is installed in an open area and consists
of air temperature, relative humidity, precipitation, and wind
speed that are sampled 1.5 m above ground level (AGL),
in addition to surface (or skin) temperature and incoming
shortwave radiation (e.g., Bell et al. 2013; Diamond et al.
2013). Air temperature is measured using three independent
Thermometrics platinum resistance thermometers installed
within a fan-aspirated radiation shield, and surface tempera-
ture is obtained using an Apogee Instruments infrared tem-
perature sensor. Previous studies have shown that surface
temperatures derived from USCRN compare well against
surface temperatures derived from other platforms such as
pyrometers on board aircraft (e.g., Krishnan et al. 2015).
Precipitation is measured at each USCRN station using a
Geonor T-200B precipitation gauge. To optimize the catch
efficiency of solid precipitation, a small double-fence inter-
comparison reference shield (SDFIR) surrounds each gauge
(e.g., Rasmussen et al. 2012). Solar radiation observations
are made using a Kipp and Zonen SP Lite pyranometer.
Based on repeated calibrations for each of these sensors and
the age of the sensors, the uncertainty of the solar radiation
observations is on the order of 10%. Thus, to gain additional
confidence in the USCRN radiation measurements, we com-
pared these measurements against collocated radiation meas-
urements from the SURFRAD station in Champaign, Illinois
(Augustine et al. 2000). Over the 1-yr period of interest, there
was excellent agreement between the hourly mean USCRN
radiation observations and hourly mean incoming shortwave
radiation observations from SURFRAD; R2 was 1.00, and the
mean bias was23.066 11.1 W m22.
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Soil moisture and temperature measurements were added
to the USCRN starting in 2009, and installation was com-
pleted in 2011 (e.g., Diamond et al. 2013). Soil moisture and
temperature are measured in triplicate profiles at standard
depths of 5, 10, 20, 50, and 100 cm below ground using the
HydraProbe II soil sensors produced by Stevens Water Moni-
toring Systems, Inc. as well as the TDR-315 sensors from Ac-
clima, Inc. (e.g., Bell et al. 2013; Wilson et al. 2020). Recent
work has shown that measurements from the HydraProbes
compare well on daily time scales with measurements from Ac-
clima’s 1-GHz time domain reflectometry (TDR) sensor, but
we acknowledge that the TDR sensor was found to provide
more representative soil moisture measurements than the
HydraProbe in soils with high clay content (Wilson et al.
2020).

Monthly, daily, hourly, and subhourly data from the
USCRN are publicly available (https://www.ncei.noaa.gov/
access/crn/qcdatasets.html). In this study, we used hourly data
from the USCRN to evaluate the HRRR model performance.
Although the datasets from USCRN are provided as a contin-
uous time series, there are occasional periods of missing data
resulting from unavoidable station outages. In the present
study, we ignored observations for a given variable at a given
station if more than 25% of the record was missing. As shown
in Table 1, 99.1% and 97.4% of the stations have at least 75%
of the data available for air temperature and surface tempera-
ture, respectively, and 97.4% of the stations have at least 75%
of the precipitation and incoming shortwave radiation
available. The percent data completion is lower for soil
temperature and soil moisture. For example, 84.5% and 69.8%
of the USCRN stations have at least 75% of the soil temper-
ature and soil moisture data, respectively, available for the
5-cm depth which is largely due to e.g., frozen soils during
the cold season that limit the availability of soil moisture
observations.

b. HRRR

The HRRR has 1799 3 1059 grid points due to its 3-km
grid spacing across the continental United States. The land
use/land cover data has a 15-s (;0.5 km) resolution, and the
leaf area index data are estimated from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) (e.g., Min
et al. 2021). The HRRR itself uses the RUC LSM, which has
nine vertical levels of soil moisture and soil temperature

[0 (i.e., the surface or skin value), 1, 4, 10, 30, 60, 100,
160, and 300 cm below ground level]. The RUC computes
fluxes using an implicit scheme (e.g., Smirnova et al. 1997;
He et al. 2021) and uses Richard’s equation to represent
water transport through the soil (Richards 1931; Smirnova
et al. 1997; He et al. 2021), while heat is transferred one
dimensionally through the soil (e.g., Smirnova et al. 1997; He et al.
2021). Recent updates to the RUC LSM include an improved
treatment of snow through the implementation of a two-layer
snow model and also better representations of melting snow
(Smirnova et al. 2016). Updates to version 4 of the HRRR in-
clude improvements to the HRRR’s data assimilation systems,
specifically through the implementation of a moderately cou-
pled land–snow–atmosphere assimilation method (Benjamin
et al. 2022). In addition to using the RUC LSM, the HRRR
uses the Mellor–Yamada–Nakanishi–Niino PBL scheme
(Nakanishi and Niino 2004, 2009; Olson et al. 2021), which
has been found to have a better representation of subgrid
scale clouds than previous HRRR versions (e.g., Olson et al.
2019; Dowell et al. 2022). Additionally, the HRRR uses the
Rapid Radiative Transfer Model Global (e.g., Iacono et al.
2008) and Thompson scheme (e.g., Thompson and Eidhammer
2014) for radiation and microphysics, respectively. We refer
readers to e.g., Dowell et al. (2022) for more details about the
HRRR’s configuration.

We evaluated the latest operational version of the HRRR
(i.e., version 4) for eight different forecast periods: the 1-, 3-,
6-, 12-, 18-, 24-, 30-, and 48-h forecasts. These forecasts were
obtained from the Amazon web services’ HRRR data archive
(https://registry.opendata.aws/noaa-hrrr-pds/) using a data ex-
traction protocol by Blaylock et al. (2017). Hourly HRRR
output is available for the forecasts through 18 h, and the
HRRR output is available every six hours for forecast periods
beyond the 18-h forecast. Thus, in a given day, a forecast out
to 18 h is provided every hour; however, at 0000, 0600, 1200,
and 1800 UTC the model outputs hourly forecasts out to 48 h.
Consequently, during the 1-yr study period, for the 1–18-h
forecasts, there are 8760 different modeling runs for each of
these forecast periods; for the 24-, 30-, and 48-h forecasts,
there are 2190 different modeling runs for each of these fore-
cast periods.

To evaluate the performance of the model within the soil, we
used the HRRR output from 4 and 10 cm for comparison
against the USCRN soil moisture and soil temperature observa-
tions, which closely align with the USCRN’s 5- and 10-cm
measurements. Because sensors were not installed at 100 cm at
all USCRN stations, we focus only on the 5- and 10-cm depths
in this study.

3. Methods

For all variables except for precipitation, we computed the
daily means from the hourly values at each USCRN station
and compared these values against the modeled values ob-
tained from the HRRR grid cell containing that station. We
acknowledge, though, that we did not treat stations that were
located very near the edge or corner of the HRRR grid cell in

TABLE 1. Percent of stations with at least a 75% data completion
for a given variable.

Variable Percent

Air temperature (Ta) 99.1
Skin temperature (Ts) 97.4
Incoming shortwave radiation (SWd) 98.3
Precipitation (P) 97.4
5-cm soil temperature (ST05) 84.5
10-cm soil temperature (ST10) 87.1
5-cm soil moisture (SM05) 69.8
10-cm soil moisture (SM10) 75.0
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which the USCRN station was located any differently from
stations located nearer the center of the HRRR grid cell.
Because we averaged across multiple stations and seasons,
we expect any affects here to be minimal. We also note the
known caveats associated with comparing a point observation
from each USCRN station with a 3-km grid cell. For example,
in flat, homogeneous areas, the difference in scale between a
point observation and model grid cell is less important than
for stations located in complex topography and/or cases
where there exists subgrid-scale land cover variations. We ac-
knowledge that the uncertainty of comparing the point meas-
urements from the USCRN stations will be larger in the latter
instance, although we do not explicitly quantify this uncer-
tainty in the present study.

Comparing model-derived precipitation with observed pre-
cipitation presents its own unique challenges. Because slight
misplacements in precipitation can lead to the so-called dou-
ble penalty problem (e.g., Gilleland et al. 2009; Ikeda et al.
2013), we first computed the sum of the hourly precipitation
totals for each day and determined the maximum modeled
value over an 18 km 3 18 km area (i.e., 36 HRRR grid cells)
surrounding the station’s grid cell. We then computed the
daily sum of the maximum modeled values and used this daily
sum for comparison against the observed daily precipitation
total at each USCRN station.

We then evaluated the performance of the HRRR for all
variables by computing the mean bias error (MBE), which we
define as the output from the model for a given variable minus
the observed value; the slope of the best fit line between the
modeled and observed values (mb); the coefficient of regression
(R2); and the root-mean-square error (RMSE). To assess the
performance of the HRRR over different regions of the United
States, we classified the USCRN stations into the nine climate
regions defined by the National Center for Environmental Infor-
mation (NCEI): Northeast, Southeast, Upper Midwest, Ohio
Valley, South, Northern Rockies and Plains (i.e., West North
Central), Southwest, Northwest, andWest (Fig. 1a).

We also evaluated the performance of the HRRR across
different land cover types by using the land cover type derived
from the HRRR grid cell containing each USCRN station.
The HRRR uses 21 land cover categories which are obtained
from MODIS; of the 21 land cover categories, 12 are repre-
sented by at least one USCRN station. However, for the pur-
poses of this study, we classified stations with the HRRR land
cover closed shrublands and open shrublands as shrublands,
and we reclassified stations with the HRRR land cover woody
savanna and savanna land cover types as savanna. Addition-
ally, we classified stations with the HRRR land cover ever-
green needleleaf forest, evergreen broadleaf forest, deciduous
broadleaf forest, and mixed forest as simply forest. As shown
in Fig. 1b, however, the majority of USCRN stations are

FIG. 1. USCRN stations classified by (a) NCEI climate region and (b) the station’s land cover type based on the
HRRR grid cell. Stations used in the analyses are denoted by a filled circle, and the stations that are omitted from all
analyses because of the water land cover classification are denoted by a filled triangle. The number of stations for
each category is shown in parentheses in the legend.
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classified as either croplands or grasslands; these land cover
types account for the land cover at 32% and 24%, respec-
tively, of the USCRN stations.

Eight of the USCRN stations are classified as the water land
cover type in the RUC LSM due to the stations’ proximity to
the Atlantic Ocean, Pacific Ocean, Great Lakes, or in the case
for the USCRN station at Necedah, Wisconsin, due to several
lakes near the station (cf. Fig. 1b). Since the pixels with the wa-
ter land cover classification are treated differently in the RUC
LSM as compared with the other land cover types, we re-
moved these eight USCRN stations with the water land cover
classification from all subsequent analyses. Furthermore, when
evaluating the HRRR performance over different land cover
types, we omitted the barren or sparsely vegetated land cover
classification because there was only one USCRN station with
this particular land cover type, although we did include this
station in all other analyses.

As previous studies have reported a warm, dry bias in the
HRRR (e.g., Benjamin et al. 2016; Lee et al. 2019; Min et al.
2021), in this study we evaluated the role of radiation on the
model MBE by computing a clearness index Cindex for each
day in 2021 using the incoming shortwave radiation (SWd) ob-
servations obtained from the USCRN stations. The Cindex is
calculated as follows:

Cindex 5
∑SWo

∑SWt

: (1)

In Eq. (1), ∑SWo is the total amount of incoming shortwave
radiation measured at a USCRN site and summed for a given
day; ∑SWt is the sum of the total theoretical maximum in-
coming solar radiation that could be received on that day at
that particular location and is calculated using the proce-
dure described by Whiteman and Allwine (1986). Following
Whiteman and Allwine (1986), SWt can be calculated for
any location on Earth’s surface and varies as a function of
time of day, day of year, latitude, longitude, and the inclina-
tion, azimuth, and steepness of the slope (e.g., Whiteman
and Allwine 1986; Whiteman et al. 1999). Because the im-
mediate area surrounding each USCRN station is relatively
flat, we used a value of 08 for the inclination, azimuth, and
steepness. Prior to computing the Cindex, we removed physi-
cally unrealistic values of SWd (e.g., nighttime values of
SWd . 0), as well as instances when the Cindex is unrealisti-
cally high (e.g., . ;0.85 following Lee et al. 2015). Across
all USCRN sites in 2021, the mean and median Cindex was
0.51 and 0.57, respectively (Fig. 2), and the mean Cindex for
the different NCEI regions ranged from 0.45 in the North-
east and Upper Midwest to 0.60 in the Southwest.

4. Results and discussion

a. HRRR performance as a function of variable and
forecast period

1) INCOMING SHORTWAVE RADIATION

We found that, when averaged across all USCRN stations
in the contiguous United States, the difference between the

HRRR and observed values, averaged to daily time scales,
varied seasonally for many of the variables evaluated in the pre-
sent study. Mean SWd had a positive MBE across the year and
across all forecast hours that ranged from around 20 W m22 in
January and February to about 40 W m22 between May and
August (Fig. 3a). When averaged across the entire year and
across all seasons, there was good agreement between the fore-
casted and observed SWd, as R

2 and mb were around 0.9 and 1,
respectively, for the 1–18-h forecasts (Fig. 4). The R2 and
mb decreased for the 24-, 30-, and 48-h forecasts but were
still greater than 0.7 and 0.9, respectively. The MBE actually
decreased as a function of forecast hour, but the standard
deviation in the error increased as a function of forecast
hour. When distinguishing by season, we found an R2 and
mb of ;0.8 and ;0.9, respectively, in January for the 1–18-h
forecasts. Conversely, in the 24-, 30-, and 48-h forecasts, R2

was 0.69, 0.53, and 0.59, respectively, and mb was 0.83, 0.78,
and 0.77, respectively (Fig. 5). Similarly, the larger MBEs
occurred at the earlier forecast hours, but as when averaged
over the entire year, the standard deviation in the error in-
creased as a function of forecast hour. The same trend oc-
curred in July, although July had lower values than January for
R2 and mb, as these were around 0.7 and 0.8, respectively, for
the 1–18-h forecasts (Fig. 6).

2) AIR TEMPERATURE

The difference between the modeled and observed air tem-
perature also varied seasonally, although the difference lagged
the SWd MBE. Between January and May, as well as between
October and December, the MBE generally ranged from about
08 to 0.58C, although there were some instances during the latter
forecast periods (i.e., the 30- and 48-h forecasts), when the daily

FIG. 2. The Cindex histogram for all USCRN sites in 2021. The
mean Cindex 6 1 standard deviation (i.e., s) and median Cindex are
shown at the top left.
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MBE was low as 21.08C. Between May and October, the MBE
was between 0.58 and 1.08C and was as large as 1.58C in late July
and August in the 30- and 48-h forecasts (Fig. 3b). For the year
and for across all stations, the MBE was 0.358 6 1.018C in the

1-h forecast but 0.378 6 1.848C in the 48-h forecast and, as for
SWd, the standard deviation in the error increased as a func-
tion of forecast hour (Fig. 4). The R2 and mb were also re-
markably high, as these were $0.97 and ;1.00, respectively,

FIG. 3. Time series of mean HRRR minus mean USCRN observations as a function of time of year in 2021 for the
1- (brown line), 3- (red line), 6- (orange line), 12- (yellow line), 18- (green line), 24- (dark green line), 30- (blue line),
and 48-h (purple line) HRRR forecasts for (a) SWd, (b) Ta, (c) Ts, (d) ST05, (e) ST10, (f) P, (g) SM05, and (h) SM10.
The values represent the mean daily differences over all of the USCRN stations, except for P, in which the daily totals
are used both for the USCRN observations and HRRR model output prior to computing the differences between the
model and observations.
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for all forecast hours. When differentiating by season, we found
that these values were lower in July than in January. For exam-
ple, R2 was $0.92 for all forecast hours in January (Fig. 5) but
decreased to 0.85 in the 48-h forecast in July (Fig. 6). Overall,
the positive MBE that we found for SWd and the ensuing posi-
tive MBE in air temperature has been reported in previous
studies evaluating earlier versions of the HRRR and was attrib-
uted to the model’s inability to resolve subgrid-scale clouds
(e.g., Benjamin et al. 2016; Lee et al. 2019; Wagner et al. 2019).
We also note that, since the air temperature is a postprocessed
field relying on relationships between the surface and first hybrid
level above the surface rather than being explicitly calculated by
the model, some of the errors in the HRRR’s air temperature
may also be due to the postprocessing methodology used.

3) SURFACE AND SUBSURFACE TEMPERATURE

When assessing the HRRR’s performance for surface and
subsurface temperature, we found lower values for mb and R2

than we found for air temperature. For skin temperature Ts,
we found that mb and R2 were around 0.9 and 0.96, respec-
tively, across all forecast hours (Fig. 4). Furthermore, these
values were lower in July than in January. For example, mb

ranged from 0.87 to 0.81 between 1- and 48-h forecast, respec-
tively, in January (Fig. 5), whereas in July mb ranged from
0.77 to 0.72 between the 1- and 48-h forecast, respectively
(Fig. 6). The MBE in the 5- and 10-cm soil temperatures did
not show a clear seasonal pattern, although we note a period
in which the MBE was , 238C in February at both levels

FIG. 4. (a) MBE, (b) mb, (c) R2, and (d) RMSE for P (green line), SM05 (blue line), SM10 (purple line),
ST05 (brown line), ST10 (orange line), SWd (black line), Ta (red line), and Ts (yellow line) as a function of HRRR
forecast hour. To show all lines on the same graphs, the MBE and RMSE for SM05 and SM10 have been multiplied by
100, and the MBE and RMSE for SWd have been multiplied by 0.1. The units of MBE and RMSE for precipitation, soil
moisture, temperature, and radiation are mm, m3 m23, 8C, andWm22, respectively.
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(Figs. 3d,e), which became more apparent when looking more
closely at the relationship between the HRRR and USCRN
observations, as shown in the example 1:1 plots in Fig. 7. Al-
though we note a 1:1 relationship between the modeled and
observed soil temperature for temperatures above 08C, for
temperatures below 08C, the HRRR showed a much larger
negative MBE in soil temperature, which was reported in pre-
vious work (Min et al. 2021) and has been attributed to the
HRRR’s inability to properly simulate freezing and thawing
processes within the soil (e.g., Viterbo et al. 1999). The biases
in soil temperature can also be attributed to the data assimila-
tion approach used in the HRRR, as near-surface air temper-
atures are matched at the time of the model’s initialization,
and excess heat is moved into the soil (Benjamin et al. 2022).
Another explanation for the negative MBE in soil tempera-
ture is that, in cases with snow, the HRRR permits partial
snow cover, allowing for lower temperatures, whereas for

example a USCRN site may have full snow cover, providing
insulation and resulting in higher observed soil temperatures
than predicted by the HRRR. Overall, though, the agreement
between the modeled and observed soil temperature did not
vary significantly as a function of forecast hour; R2 was ;0.9
for all forecast hours and for both levels, and mb was ;1 for
5- and 10-cm soil temperature (Fig. 4). In January, mb was
;1.1 for both depths and across all forecast hours (Fig. 5),
whereas in Julymb was;0.7 (Fig. 6).

4) PRECIPITATION

Errors in modeled precipitation increased as a function of
forecast time, with an MBE of 0.41 mm in the 1-h forecast,
but 0.74 mm in the 48-h forecast (Fig. 4) for the entire year. In
January and July, the MBE ranged from 0.19 to 0.39 mm (Fig. 5)
and from 0.76 to 1.36 mm (Fig. 6), respectively, between the
1- and 48-h HRRR forecasts. Model skill was also best for the 1-h

FIG. 5. As in Fig. 4, but for January 2021.
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forecasts, as evident by the lowest RMSEs and generally largest
values forR2.

5) SOIL MOISTURE

As was the case for soil temperature, when averaged
across all USCRN stations in the contiguous United States,
the MBE in soil moisture at 5 and 10 cm tracked each other
very closely as a function of time of year. The largest MBE
overall was in January and February, when the MBE was
0.05–0.06 m3 m23 (Figs. 3g,h). Between early May and Novem-
ber, the MBE across all forecast periods was ,60.02 m3 m23.
The R2 and mb varied little as a function of forecast hour
and were consistent for both depths, as R2 and mb were 0.36
and 0.34, respectively.

Overall, the HRRR generally overestimated soil moisture
for dry soils (i.e., ,0.2 m3 m23) but underestimated soil
moisture for more moist soils (i.e., those with observed soil

moisture . 0.2 m3 m23), as illustrated in the 1:1 plots shown in
Fig. 7. Previous studies using different models have found similar
results, including Leeper et al. (2017) who evaluated the North
American Regional Reanalysis (Mesinger et al. 2006) using
USCRN data from 2011 to 2013. Other researchers reported
similar errors in evaluations of the Noah LSM (e.g., Fan
et al. 2011; Xia et al. 2015). One possible explanation for the
errors is that the models do not account for the aggregate frac-
tion (i.e., stones, etc.) for many of the soils in the western
United States. For example, an aggregate fraction of 10% re-
duces the field capacity and soil moisture by 10%, which is simi-
lar to the MBEs we found.

b. Effects of clouds on HRRR performance

As noted earlier, when averaged across diurnal time scales,
the HRRR generally overestimated SWd for all seasons. We
further investigated this behavior by distinguishing between

FIG. 6. As in Fig. 5, but for July 2021.

L E E E T A L . 887JUNE 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:06 PM UTC



FIG. 7. Relationship between the HRRR 18-h forecast and USCRN observa-
tions of (a) SWd, (b) Ta, (c) Ts, (d) ST05, (e) ST10, (f) P, (g) SM05, and (h) SM10.
The solid blue line shows the line of best fit, and the dashed blue line shows the
1:1 line. TheR2, equation for the line of best fit, MBE6 1 standard deviation (1s) in
theMBE,RMSE, and number of samples (N) are shownat the top left of each panel.
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clear and cloudy days by computing Cindex percentiles after re-
moving days on which the Cindex exceeded 0.85 (cf. section 3).
We defined clear days as those on which the Cindex exceeded
the 80th percentile across all stations (i.e., Cindex . 0.684), and
we defined cloudy days as those on which the Cindex was below
the 20th percentile across all stations (i.e., Cindex , 0.335).

In January, when all days are considered irrespective of the
day’s Cindex, the MBE was around 75 W m22 but was around
100 W m22 in April and July (Figs. 8a–d), which resulted in a
positive MBE in air temperature (Figs. 8e–h) and 5-cm soil
temperature (Figs. 8i–l). The HRRR captured the larger am-
plitude in the diurnal temperature variability on the subset of

FIG. 8. Mean diurnal cycle of SWd in (a) January, (b) April, (c) July, and (d) October for the USCRN (black line), the HRRR 1-h fore-
cast (blue line), and the HRRR 18-h forecast (red line). (e)–(h),(i)–(l),(m)–(p) As in (a)–(d), but for Ta, ST05, and SM05, respectively. The
solid lines represent the mean for all days; the dotted lines are only for days on which the Cindex was below the 20th percentile; and the
dashed lines are only for days on which the Cindex was above the 80th percentile.
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clear days but overestimated minimum temperatures by as much
as 38C in the 18-h forecast which happened in October. Cloudy
days had the largest overestimates in SWd, with an MBE in the
afternoon as large as 200 W m22 in July in both the 1- and 18-h
forecasts. Furthermore, the 18-h forecast more significantly over-
estimated SWd during the early–midmorning on cloudy days as
compared with the 1-h forecast.

As expected, the hourly averaged 5-cm soil moisture
showed little diurnal variability in the observations and
HRRR forecasts (Figs. 8m–p). When all days were consid-
ered, the HRRR underestimated soil moisture by on average
0.06 and 0.05 m3 m23 in January and April, respectively,
whereas the offset between the model and observations was
negligible in July and October. On the subset of clear days,
the HRRR overestimated soil moisture by on average 0.07
and 0.03 m3 m23 in July and October, respectively. The MBE
in the soil moisture was lower for cloudy days than for clear
days. However, we note that, despite the relatively small off-
sets between the modeled and observed soil moisture, the
standard deviations in the mean diurnal cycle of soil moisture
were nontrivial and typically ;0.12 m3 m23 in the USCRN
observations, but ;0.06 m3 m23 in the HRRR 1- and 18-h
forecasts.

c. Potential sources of errors in the HRRR

1) ROLE OF ERRORS IN INCOMING SHORTWAVE

RADIATION ON MODEL PERFORMANCE

As noted in section 4a, the HRRR generally predicts too
much incoming shortwave radiation which generally corre-
lates with a positive MBE in temperature. We investigated
the errors in incoming shortwave radiation using the Cindex de-
scribed in section 3 and found an inverse relationship between
the MBE in SWd (taken only for when SWd . 0 W m22) and
the Cindex. Over the entire 1-yr period, the MBE in SWd was

around 40 W m22 for days with a low Cindex (i.e., cloudy days),
but was around 15 W m22 on days with a high Cindex (i.e., clear
days and days with optically thin clouds) and showed marked
seasonal differences. In January, when the Cindex was ;0.1,
the MBE for SWd was ;60 W m22 and decreased only slightly
as a function of Cindex (Fig. 9a). In July, the MBE in SWd

ranged from 100 to 120 W m22 on days with a low Cindex to
about 60 W m22 on days with a high Cindex (Fig. 9b). These re-
sults were consistent with those for other forecast hours (not
shown), and the results agree with findings from Min et al.
(2021), who similarly investigated the relationship between a
clear-sky index and the difference between the observed and
modeled incoming shortwave radiation. Min et al. (2021) noted
that days with low Cindex were associated with individual strato-
cumulus and cumulonimbus clouds which, due to their scale,
were unable to be resolved by the HRRR.

To understand the radiation errors in more detail, we inves-
tigated the relationship between the HRRR’s SWd MBE and
the within-hour variability in the observed SWd to determine
if the HRRR performed better when the observed SWd vari-
ability was small (e.g., cases with stratus or stratocumulus
clouds) compared with when the observed SWd variability
was large (e.g., cases with broken clouds or cumulus clouds).
As the USCRN reports the 5-min values of SWd, we used
these values to compute the standard deviation in SWd for
each hour for each USCRN station. We found a statistically
significant, positive relationship between the SWd MBE and
observed SWd standard deviation that became weaker as a
function of forecast hour in January (Fig. 10). In July, there
was also a positive relationship between the SWd MBE and
the within-hour variability in the observed SWd for all fore-
cast hours. Similarly, the strength of this relationship was
strongest for the 1-h forecast (r 5 0.29, p , 0.01). The larger
errors in SWd for the cases with larger within-hour SWd var-
iability suggest the HRRR has difficulty resolving instances

FIG. 9. Mean differences (filled red circles) 61 standard deviation (bars) between the HRRR 18-h forecast and
USCRN SWd as a function of the Cindex in (a) January and (b) July. Note the differences in SWd are only computed
for hours in which the observed SWd is positive.
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with broken or scattered clouds which occur on spatial and
temporal scales that are too small to be resolved by the
model.

We also found a statistically significant positive relationship
between the SWd MBE and the Ta MBE that was stronger in
the summer than during the winter (Fig. 11). In July the rela-
tionship between these variables for the 18-h HRRR forecast
was 0.26 (p , 0.01), whereas in January it was 0.11 (p , 0.01).
These results are consistent with Min et al. (2021) who similarly
observed stronger correlations between SWd and Ta during the
warm season than during the cold season. The smaller correla-
tions during the cold season are likely related to other factors
(e.g., snow cover increasing the albedo, frozen soils, etc.) that
reduce the importance of incoming solar radiation on modeled
temperature.

2) ROLE OF DIFFERENT SOIL MOISTURE AMOUNTS ON

MODEL PERFORMANCE

As noted in section 4a, the HRRR generally overesti-
mated soil moisture when the observed soil moisture was
,0.2 m3 m23 but underestimated the soil moisture when the
observed soil moisture exceeded this value. Consequently, there
was a strong inverse relationship between the observed soil
moisture and the MBE in the 18-h HRRR forecast that is
present both in January (Fig. 12a) and in July (Fig. 12b),
where r 5 20.839 (p , 0.001) and r 5 20.854 (p , 0.001),
respectively, as well as for the other forecast hours (not
shown). Additionally, the slope of the relationship between
the soil moisture MBE in the 18-h forecast and the observed
soil moisture was 20.70 and 20.64 in January and July, re-
spectively, with similar results for the other forecast hours.
The strong inverse linear relationship implies a possible is-
sue with the representation of soil moisture conductivity in
the HRRR.

We also found a relationship between the temperature
MBE and the observed soil moisture when all times of day
were considered. In July, there was a positive relationship be-
tween HRRR’s air temperature MBE and the observed 5-cm
soil moisture at the USCRN stations. The relationship was
stronger for the earlier forecast hours than for the later
forecast hours. For example, in the 1-h forecast, r was 0.19
(p , 0.01), but in the 48-h forecast, r was 0.07 (p , 0.01)
(Fig. 13). In January, we found no relationship between the
MBE in the 1-h HRRR’s air temperature and observed soil
moisture (r5 0.04, p5 0.13), whereas the later forecast periods
had a statistically significant inverse relationship, as r 5 20.22
(p, 0.01) in the 48-h forecast.

Because the daytime 2-m observations of temperature and
dewpoint temperature are used to make adjustments to soil
temperature and moisture in the HRRR, we also evaluated
the relationship between the HRRR’s temperature MBE and
observed soil moisture but only for the daytime, i.e., when
SWd . 0 (Fig. 14). We found similar results to the results re-
ported above, the exception was the relationship in the 48-h
forecast in July when the relationship between these variables
shifted from a weak positive relationship (cf. Fig. 13f; r 5 0.07,
p, 0.01) to a stronger negative relationship (Fig. 14f; r520.38,
p , 0.01). Despite there generally being statistically significant
relationships here, the lack of a strong correlation between the
temperature errors and soil moisture suggests other factors be-
sides these contribute to the HRRR’s temperature biases, e.g.,
errors in the HRRR’s heat fluxes which have been reported as a
source of bias in previous work (e.g., Lee et al. 2019).

d. HRRR performance by NCEI region

When averaged across the year, nearly all USCRN stations
had a positive MBE in SWd (Fig. 15a). Stations in the South-
east had the largest RMSE (36 W m22) and the lowest R2 and

FIG. 10. Pearson correlation coefficient (r) for the relationship
between the difference between the HRRR forecast and USCRN
SWd as a function of the observed SWd standard deviation for the
eight different forecast hours. All values are significant at the 0.01
confidence level (i.e., p, 0.01).

FIG. 11. Pearson correlation coefficient between the difference in
modeled and observed SWd vs the modeled and observed Ta for
the eight forecast periods investigated in the present study and
only for cases when the observed SWd is positive. All values are
significant at the 0.01 confidence level (i.e., p, 0.01).
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mb of all regions in the 18-h HRRR forecast (Fig. 16). This
was also the case in the other forecast hours (not shown). Air
temperature correspondingly showed a positive MBE across
the United States, although a few USCRN stations in the
Southwest, Northern Rockies and Plains and along the East
Coast had a slightly negative MBE (Fig. 15b). For the 18-h
forecast, the MBE was ,18C across all USCRN stations, and
the RMSE ranged from 1.198C for the Northeast to 1.668C for
stations in the Northern Rockies and Plains. Surface tempera-
ture generally followed this pattern, although Ts had slightly
lower R2 and mb and a higher RMSE than Ta. The exception
was the West where Ts had a more pronounced negative
MBE than Ta (Fig. 15c), resulting in an MBE of21.08C in the
18-h forecast for stations in the West.

When averaged across the entire year, 5- and 10-cm soil
temperatures generally showed a negative MBE across all re-
gions (Figs. 15d,e) but there was significant variability in these
values as indicated by the large standard deviations at the
5- and 10-cm depths and RMSEs that were about 2–3 times
larger than the RMSEs for Ta. The larger RMSEs for soil
temperature as compared with air temperature were apparent
not only in the 18-h HRRR forecast (Fig. 16) but for other fore-
cast periods as well (not shown).

The model overestimated precipitation (Fig. 15f), with the
largest overestimates occurring over the Southeast. The overesti-
mates in this particular region of the United States may be due
to e.g., the highly spatial nature of warm-season convection
and errors associated with subgrid-scale precipitation gradients
compared to gauge measurements. Model performance was
generally best over the western United States; R2 between the
observations and 18-h forecast was 0.66 and 0.53 over the
Northwest and West, respectively, but was 0.05 for the South-
east and South (Fig. 16). It is important to note that our analy-
ses did not show any consistent evidence of undercatch at
the USCRN stations that more routinely experience frozen

precipitation. However, we found smaller biases in precipita-
tion at stations in the Northern Rockies and Plains where frozen
precipitation is more common than in other regions. The USCRN
goes to great lengths to ensure that snow is accurately measured
as water equivalent of snow using a small double-fence intercom-
parison reference coupled with a heated weighing gauge. The
wind fencing around the precipitation gauge, including a single-
alter shield, ensures the most accurate measurement of precipita-
tion (e.g., Kochendorfer et al. 2022).

As we found for precipitation, we found that the HRRR had
strong regional differences in soil moisture, showing a positive
MBE in the western United States and negative MBE in the
eastern United States (Figs. 15g,h and 16). In the Southwest,
Northwest, andWest (where soil moisture conditions are gener-
ally well below 0.2 m3 m23), the HRRR overestimated 5-cm
soil moisture in the 18-h forecast by 0.07, 0.06, and 0.07 m3 m23,
respectively, whereas the HRRR underestimated 5-cm soil
moisture by 0.09 m3 m23 over the Ohio Valley. We also found
significant variability in the model performance across the differ-
ent regions. The model performance was best in the Upper Mid-
west and across the Northern Rockies and Plains, where mb was
0.40 and 0.63, respectively, and R2 was 0.75 and 0.74, respec-
tively. In contrast, the Southeast had the poorest agreement be-
tween the modeled and observed 5-cm soil moisture, as mb and
R2 were 0.09 and 0.02, respectively. These results were consistent
for the 10-cm soil moisture values, as well as for the other fore-
cast hours (not shown). We suspect the poor agreement in soil
moisture occurs due to the aforementioned spatial nature of
warm-season convection over this region which results in fine-
scale precipitation gradients.

e. HRRR performance by land cover type

We found a positive MBE in air temperature across all land
cover types. The positive MBE coincided with a positive SWd

MBE (Fig. 17). The MBE in SWd ranged from 20 W m22 over

FIG. 12. Modeled minus observed 5-cm soil moisture as a function of 5-cm soil moisture observed at all USCRN sta-
tions for the HRRR 18-h forecast in (a) January and (b) July. The blue line shows the line of best fit, and the values
for r and p are shown in the top right of each panel.
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FIG. 13. Modeled minus observed air temperature as a function of 5-cm soil moisture observed at all USCRN
stations for the HRRR 1-h forecast in (a) January and (b) July. (c),(d) As in (a) and (b), but for the HRRR 18-h
forecast. (e),(f) As in (a) and (b), but for the HRRR 48-h forecast. The blue line shows the line of best fit for
cases in which there is a statistically significant relationship. The values for r and p are shown in the top right of
each panel.
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FIG. 14. As in Fig. 13, but only for cases when SWd . 0.
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the savanna to 28 W m22 over the grassland land cover type.
All land cover classifications had anmb and R2 of;1 and;0.9,
respectively, for the relationships between the modeled and
observed SWd.

Surface temperatures had a mean positive MBE for forest,
savanna, grassland, and cropland, but a mean negative MBE

for shrubland. As was the case when classifying the stations
by region, the standard deviations were about twice as large
for surface temperature as they were for air temperature.
Also, all land cover types had fairly similar mb, R2, and
RMSE values. Soil temperatures had a negative MBE across
the different land cover types, but there was overall good

FIG. 15. Spatial variability in the difference between the 18-h HRRR forecast and the USCRN observations over the contiguous United
States for (a) SWd, (b) Ta, (c) Ts, (d) ST05, (e) ST10, (f) P, (g) SM05, and (h) SM10. The values represent the mean daily differences, except
for P, in which the daily totals for the entire year are used both for the USCRN observations and HRRRmodel output prior to computing
the differences.
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agreement between the model and observations as evident by
R2 . 0.9. RMSE was largest for the cropland land cover type
for all depths.

The HRRR’s largest overestimates in precipitation were
for the cropland land cover type, and the HRRR best pre-
dicted precipitation over the shrubland land cover type. The
mean soil moisture MBE values at 5 cm were largest over
the shrubland. The agreement between the observations
and HRRR was best over the savanna where mb and R2

were 0.40 and 0.68 at the 5-cm level. The results were gener-
ally consistent at 10 cm, although we note that mb was
slightly larger over the shrubland (0.41) than it was for the
savanna (0.38).

5. Summary and conclusions

We presented the first known study evaluating the perfor-
mance of the HRRR’s subsurface moisture and temperature
fields over the contiguous United States, using observations ob-
tained from the USCRN between 1 January and 31 December
2021. Over this entire period, the HRRR best simulated near-
surface air temperature with RMSEs ranging from 18C at the
1-h forecast to around 28C in the 48-h forecast. RMSEs were
generally larger for surface and subsurface temperatures than

they were for air temperature. Importantly, soil temperatures
had larger values of RMSE when the observed soil temperatures
were below freezing.

We next investigated possible error sources in the HRRR by
studying the role of HRRR’s performance under different radi-
ative conditions and different soil moisture regimes. We found
that the downwelling shortwave radiation errors were generally
largest under cloudy skies (i.e., low Cindex). The radiation errors
were larger for cases with broken clouds than for cases with
stratiform clouds, and there was a positive relationship between
the MBE in incoming shortwave radiation and air temperature
that was stronger in the summer than in the winter. We also
found that the HRRR overestimated soil moisture for dry soils
(i.e., ,0.2 m3 m23) but generally underestimated soil moisture
when the soil moisture exceeded 0.2 m3 m23. Temperature er-
rors as a function of soil moisture varied by forecast hour and
season. There was a positive relationship between the MBE in
the HRRR forecast of air temperature and observed soil mois-
ture in July, which may be related to a larger amount of sensible
heating in the model caused by the drier biases for moist soils.
Soil moisture may also contribute to some of the warm season
biases when land cover processes (e.g., evaporation, surface
roughness, etc.) and associated atmospheric landcover interac-
tions are most prominent.

FIG. 16. (a) MBE, (b) mb, (c) R
2, and (d) RMSE for P (green line), SM05 (blue line), SM10 (purple line), ST05

(brown line), ST10 (orange line), SWd (black line), Ta (red line), and Ts (yellow line) for the nine NCEI regions identified
in Fig. 1a: Northeast (NE), Southeast (SE), Upper Midwest (UM), Ohio Valley (OV), South (S), Northern Rockies and
Plains (NR), Southwest (SW), Northwest (NW), and West (W). To show all lines on the same graphs, the MBE and
RMSE for SM05 and SM10 have been multiplied by 100, and the MBE and RMSE for SWd has been multiplied by 0.1.
The units of MBE and RMSE for precipitation, soil moisture, temperature, and radiation are mm, m3 m23, 8C, and
Wm22, respectively.
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We further evaluated the HRRR’s performance for differ-
ent geographic regions of the United States and land cover
types. The most notable regional MBEs across were present
in soil moisture, where the 5- and 10-cm depths exhibited a
positive MBE in the drier western United States and a nega-
tive MBE in the wetter eastern United States. Therefore,
there existed a relatively tight linear relationship between the
observed soil moisture and the soil moisture MBE which im-
plies a possible issue with the soil moisture conductivity in the
HRRR. Overall, the HRRR best simulated soil moisture over
the Upper Midwest as well as the Northern Rockies and Plains
but did not simulate soil moisture well over the Southeast
United States. When classifying the USCRN stations by land
cover type, we found that the HRRR overestimated incoming
shortwave radiation and air temperature, and we found that the
USCRN stations with the shrubland land cover classification
had the largest errors in 5-cm soil moisture. However, it is im-
portant to reiterate caution when interpreting conclusions re-
garding the HRRR’s performance under certain conditions,
e.g., 1) stations where the HRRR land cover type is not entirely
representative of the land cover type at the USCRN station,
e.g., USCRN stations at which the RUC LSM used in the
HRRR assigns the forest land cover type; 2) USCRN stations
located in mountainous areas, e.g., over the western United
States, and/or stations with subgrid-scale variations in land
cover type; and 3) instances in which the HRRR has partial
snow cover.

Despite the aforementioned caveats, the results from this
work build upon previous research that has identified ways to
improve upon recent operational versions of the HRRR that
have noted e.g., biases in surface fluxes (Lee et al. 2019),
biases in PBL observations of temperature and wind (e.g.,
Fovell and Gallagher 2020), biases within mesonets (Min et al.
2021), etc. Careful consideration of these biases, coupled with
the development of and modifications to new surface-layer pa-
rameterization schemes (e.g., Sorbjan 2017; Lee and Buban
2020; Lee et al. 2021; Greene et al. 2022; Wulfmeyer et al.
2023; Lee and Meyers 2023), will lead to improvements in the
LSMs used in high-resolution weather forecasting models.
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